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Reactive oxygen species (ROS) signaling regulates cell behaviors and tissue

growth in development, regeneration, and cancer. Commonly, ROS are

modulated pharmacologically, which while effective comes with potential

complications such as off-target effects and lack of drug tolerance. Thus,

additional non-invasive therapeutic methods are necessary. Recent advances

have highlighted the use of weak magnetic fields (WMFs, <1 mT) as one

promising approach. We previously showed that 200 μT WMFs inhibit ROS

formation and block planarian regeneration. However, WMF research in

different model systems at various field strengths have produced a range of

results that do not fit common dose response curves, making it unclear if WMF

effects are predictable. Here, we test hypotheses based on spin state theory and

the radical pair mechanism, which outlines how magnetic fields can alter the

formation of radical pairs by changing electron spin states. This mechanism

suggests that across a broad range of field strengths (0–900 μT) some WMF

exposures should be able to inhibit while others promote ROS formation in a

binary fashion. Our data reveal thatWMFs can be used for directedmanipulation

of stem cell proliferation, differentiation, and tissue growth in predictable ways

for both loss and gain of function during regenerative growth. Furthermore, we

examine two of the most common ROS signaling effectors, hydrogen peroxide

and superoxide, to begin the identification and elucidation of the specific

molecular targets by which WMFs affect tissue growth. Together, our data

reveal that the cellular effects of WMF exposure are highly dependent on ROS,

and we identify superoxide as a specific ROS being modulated. Altogether,

these data highlight the possibilities of using WMF exposures to control ROS

signaling in vivo and represent an exciting new area of research.
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Introduction

Reactive oxygen species (ROS) are a group of oxygen-containing molecules with

varying reactivity. Intracellular ROS are typically derived frommolecular oxygen (O2) and

include hydrogen peroxide (H2O2), the superoxide anion (O2
−), and the hydroxyl radical

(•OH), species which are known to participate in cellular reactions and initiate ROS-
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mediated signaling [1]. The mechanics of ROS signaling are

complex and based on threshold levels in a context-dependent

fashion. For example, low levels of ROS are required for cellular

metabolism and homeostasis. In contrast, exceedingly high ROS

levels lead to oxidative stress, and thus nonspecific damage to a

cell’s DNA, protein, and lipid structures [2, 3]. Threshold

increases in ROS can cause imbalances in a cell’s redox state,

which can even lead to disease states such as cancer and aging [4].

However, within certain physiological parameters (that are not

fully understood), moderate increases in ROS function to

modulate traditional cell signaling pathways (termed redox

signaling) [5, 6]. In this way, ROS signaling regulates many

important cellular processes, including cell migration,

proliferation, apoptosis, and differentiation [7–9].

Recent findings, including our own, demonstrate that ROS

signaling is also critical for driving stem cell-mediated tissue

FIGURE 1
Controlling Stem Cell-Mediated Tissue Growth. (A) Theoretical model. Weak magnetic fields alter electron spins (represented by up or down
arrows) via the radical pair mechanism, changing reactive oxygen species (ROS) levels. The antiparallel valence spins of the singlet state promote
recombination, resulting in less ROS. The parallel spins of the triplet state drive diffusion, increasing ROS. (B) ROS signaling pathways. Consensus
pathway from the literature for ROS signaling starting with molecular oxygen. Two of the main species known to affect cellular activities are
superoxide (O2-) and hydrogen peroxide (H2O2). (SOD = superoxide dismutase). (C) ROS-mediated proliferation in planarians. Experimentally
derived ROS-mediated events during planarian regeneration, where changes in ROS levels affect Heat Shock Protein 70 (Hsp70), which is required
for stem cell-mediated tissue growth after injury.
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growth [10–15]. ROS signaling plays a role in cardiomyocyte

differentiation, promotes transient stem cell proliferation in

mouse skin, and is required for regenerative outgrowth in a

myriad of animal model systems [14–17]. Maintenance of stem

cell populations requires careful control of ROS levels, which can

direct them to remain quiescent, proliferate, or differentiate

depending on concentration [18]. ROS signaling plays an

equally complex role during tumorigenesis. The upregulation

of ROS scavengers (antioxidants) is a hallmark of many cancers,

functioning to allow tumorigenic cells to bypass apoptosis;

however, tumor progression can be later promoted by

increased ROS levels, and ROS scavenging has been found to

prevent the development and progression of many cancers in cell

culture [19–21].

FIGURE 2
Setup for Environmentally-Controlled Magnetic Field Exposure. (A) Diagram of MagShield Box with Coils. The μ-metal enclosure has two
chambers separated by a μ-metal partition. Coils are stacked on empty, 24-well culture plates (plastic) to position them in the center of each
chamber. Left side is the control chamber (set at 45 μT), and right side is the experimental chamber. (B)Diagramof Helmholtz Coils. Inside the square
plexiglass frame, three 35 mm Petri dishes hold samples (worms), with additional empty 24-well culture plates used to position Petri dishes in
the center of each coil. Orange lines are Y-axis coils. Purple lines are X-axis coils. (Blue dotted lines are Z-axis coils, whichwere not used in this study).
(C) Location of Petri Dishes in the UniformMagnetic Fields Produced. Black arrows show the direction of the X-axis magnetic field. Gray arrows show
the Y-axis field direction. (D) Experimental Setup. DC power supplies are positioned to the left of the MagShield Box, shown with door open (door is
kept shut during experiments).
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The data highlight the importance of ROS manipulation as a

therapeutic target in interventions where tight control of

proliferating cells and tissue growth (such as in regenerative

medicine and cancer treatments) is required [22]. Currently,

many of the standard molecular-genetic (pharmacological)

approaches to manipulating ROS come with potential

therapeutic complications such as drug toxicity. To bypass

these issues, research has turned to the use of nanoparticles

for targeted delivery; but these efforts have been hampered in

part due to patient heterogeneity that interferes with successful

distribution and/or function [23, 24]. Thus, the identification of

additional methods to alter ROS levels is warranted for improved

care and experimental approaches alike. Recent advances in our

understanding of how biological systems interact with

electromagnetic radiation suggest there is potential for finding

such new approaches to manipulating ROS in vivo by using weak

magnetic fields (WMFs, <1 mT), a form of non-ionizing

radiation.

A predominant theory for understanding the biological

effects of WMF exposures centers on the radical pair

mechanism, which has been reviewed in detail [25–30].

Briefly, theoretical modeling (Figure 1A) suggests that WMFs

can modulate radical pairs through changes in the angular

momentum of lone electrons (spin state theory). Parent

molecules can both dissociate into radical pairs and

recombine at given rates. For recombination to occur, the

unpaired electrons on the radical pairs must have opposing

valence spins. These antiparallel spin states (singlet state)

allow for rapid recombination. However, if the spin states are

parallel (triplet state), then recombination cannot occur, and

radical pairs diffuse away from one another. Modeling indicates

some WMF strengths should promote the singlet state and

recombination (thereby reducing ROS), while other strengths

should promote the triplet state and diffusion (increasing ROS).

Overall, these data suggest that in a field-strength dependent

manner WMFs might be used for the directed manipulation

of ROS.

However, the extant data on biological effects from WMFs

often appears incongruent or contradictory. Exposure to WMFs

has been shown to alter apoptosis, necrosis, and proliferation

differently depending on tissue type in rat skeletal muscle versus

renal cells [31]. Mouse embryonic stem cells exposed to 400 μT

WMFs had increased levels of ROS and stimulated growth factors

[32]. Fibrosarcoma cells exposed to only 0.2–2 μT WMFs also

increased ROS levels, while conversely exposure to WMFs less

than 3 μT reduced cell survival of mouse skeletal muscle [33, 34].

A recent study in planarians suggested that even at the same field

strength, changes in frequency can lead to either inhibition,

activation, or have no effect on regeneration [35]. These

studies indicate that precise WMF exposures may hold the

potential to be used as a novel therapeutic tool to control cell

behaviors and alter tissue growth. But for a tool to be useful, it

must be capable of inducing predictable effects on cell processes.

Unfortunately, the lack of consistency in the methods and

tissues/models used for studying WMF effects on tissue

growth, combined with the absence of typical pharmacological

dose response curves associated with WMF exposures, has made

the practical usefulness of WMFs as a tool to manipulate growth

unclear.

Previously, we established an animal model system for

studying effects from WMF exposures on new tissue growth

using the highly regenerative, free-living planarian flatworm

Schmidtea mediterranea. In this study, we use this model to

test several hypotheses based on the radical pair mechanism.

Overall, we hypothesize that specific field strengths will

predictably alter ROS signaling, suggesting WMFs can be

used for the directed manipulation of stem cell behavior in

vivo. Our first hypothesis is that WMF effects, as per the

radical pair mechanism, occur largely through the

modulation of radical pairs. This leads to the testable

prediction that at different field strengths WMFs will

produce opposite effects on ROS levels, resulting in a

binary switch from decreased tissue growth to increased

tissue growth. A second hypothesis we also test is that the

cellular signaling downstream of ROS that controls stem cell

proliferation is mediated by changes in H2O2, a product of O2

metabolism and a common second messenger in ROS

signaling (Figure 1B). These experiments aim to assess the

potential for WMFs as a therapy and begin to dissect the

mechanisms by which WMFs control stem cell-mediated

tissue growth.

Planarians are a powerful model for investigating tissue

growth mechanisms, as they can regenerate all tissues

including the brain due in part to a massive population of

pluripotent adult stem cells [36]. After a major injury, this

stem cell population responds with increased proliferation and

migration to the wound site, resulting in a

blastema—undifferentiated new tissue comprised of stem cell

progeny [37, 38]. Pharmacological inhibition of ROS blocks

planarian regeneration, while activation of ROS signaling has

been shown to rescue blastema formation [39, 40]. Previously,

our own data demonstrated that in planarians ROS signaling is

upregulated after injury and induces changes in gene expression

that regulate the stem cell proliferation and differentiation

required for blastema formation (Figure 1C), all of which

were inhibited by exposure to 200 μT WMFs [15]. These

experiments also indicated that at a different field strength

(e.g., 500 μT) tissue growth was instead increased, leading to

our current hypothesis that these field strengths are predictably

altering growth via changes in ROS signaling. Our current

experiments reveal that exposure to different WMF strengths

can be used to manipulate ROS signaling and stem cell behaviors

in a predictable non-linear fashion to either inhibit or activate

tissue growth. Furthermore, our data suggest that WMFs alter

O2
− and not H2O2 to modulate ROS signaling, providing

direction for future studies.
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FIGURE 3
Weak Magnetic Fields (WMFs) Predictably Manipulate ROS Levels and Tissue Growth. Effects on planarian regeneration. (A) Representative field
strength-dependent effects on ROS accumulation at the anterior wound site 1 h after injury, where 200 µT inhibits and 500 µT increases ROS levels
as compared to 45 µT controls. ROS visualized with a general oxidative stress indicator fluorescent dye (CM-H2DCFDA) as a heat map of signal
intensity: red/white/green = high ROS; blue/black = low/none. (B)Quantification of (A) showing changes in ROS levels (as compared to 45 µT

(Continued )
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Results

WMF effects are consistent with the
radical pair mechanism

We experimentally controlled magnetic field exposure

during planarian regeneration using a custom μ-metal

enclosure (MagShield Box) to block external fields combined

with Helmholtz coils to produce uniform magnetic fields at

specific strengths (Figure 2). To test the hypothesis that

different WMFs will produce opposite effects on new tissue

growth that occur largely through modulation of radical

formation, we examined both ROS accumulation and

blastema formation following exposure to a controlled range

of WMFs from 0 μT to 900 μT, in 100 μT increments (Figure 3).

Controls were exposed to an Earth-normal 45 μT WMF, similar

in strength to the geomagnetic field (which ranges from

25–65 μT). Planarian trunk fragments were created by

transverse amputation just above and below the pharynx

(removing both the head and tail) and regeneration was

assessed at the anterior wound site. Trunk fragments were

exposed to specific WMF strengths within 5 min of

amputation and thereafter until analysis. The radical pair

mechanism predicts that we should see some field strengths

that increase as well as those that decrease ROS levels and

regenerative growth.

ROS accumulation was assessed at 1 h after injury, when it

has been shown that ROS is upregulated at the wound site [15].

To visualize ROS levels in live regenerates, we used a general

oxidative stress indicator dye (CM-H2DCFDA) that fluoresces

upon ROS activity (Figure 3A). This allowed for the

quantification of signal intensities and the statistical

comparison of ROS accumulation at each field strength

(Figure 3B). Our results show that compared to 45 μT

controls, exposure to 200 μT WMFs prevented injury-induced

ROS accumulation, while exposure to 400, 500, and 900 μTWMF

exposures all caused significant increases in ROS levels. The

greatest WMF effects were seen at 200 μT for inhibition and

500 μT for increased ROS accumulation.

Subsequent new tissue growth was assessed at 3 days after

amputation, when blastema formation is considered complete

[41]. The blastema is easily recognizable at this stage as white

tissue at the wound site, since pigmentation has not yet occurred

(Figure 3C). To account for any differences in worm size,

blastema size was calculated as a percentage of total

regenerate size (Figure 3D). We found that 100–400 μT

exposures decreased blastema size, whereas at both 500 and

900 μT we observed the formation of larger than normal

blastemas. Similar to our ROS findings, the greatest WMF

effects on new tissue growth were seen at 200 μT for

inhibition and 500 μT for increased blastema size. Our results

demonstrate that WMFs can either increase or decrease both

wound site ROS levels and tissue growth in a field strength-

dependent manner.

These data suggest that a threshold potential exists to

modulate tissue growth through WMF manipulation of ROS

formation. Furthermore, they support 1) the hypothesis that

WMF effects are consistent with our theoretical model, and 2)

our hypothesis that WMF effects result mainly from the

manipulation of ROS signaling. If correct, then we can predict

equal and opposite changes in events mediated by ROS signaling,

which in planarians includes control of adult stem cell behaviors

after injury. Therefore, we next examined the effects of 200 and

500 μTWMFs (as representative of our observed effects) on ROS

signaling and the resulting behaviors of stem cells during

regeneration (Figure 4).

At 3 days after amputation, we investigated the expression of

the chaperone heat shock protein 70 (Hsp70) (Figure 4A, top

panels), which is involved in stress responses and cell survival

[42, 43]. In planarians, blastema-associated Hsp70 expression

requires injury-induced ROS, and in turn Hsp70 upregulation is

required for ROS-mediated stem cell responses during

regeneration [15, 44]. Therefore, at the same time point we

also looked at the stem cell population using the general stem

cell marker Piwi-1, as well as the late stem cell progeny marker

Agat-1 (Figure 4A, middle panels). Our data showed that as

predicted, as compared to controls, 200 μT WMFs caused a

significant reduction in the expression of all three genes at the

wound site, while 500 μT WMFs significantly increased

expression (Figure 4B). These data demonstrate that WMF

exposure can be used to directly inhibit or activate ROS

signaling, depending on field strength.

Furthermore, we investigated WMF effects on proliferation

at 3 h after injury (Figure 4A, bottom panels). In planarians, stem

FIGURE 3 (Continued)
controls) following exposure to 0–900 µT. n ≥ 12 for all strengths. (200 µT p = 0.0003; 400 µT p = 0.0025; 500 µT p = 0.0047; 900 µT p =
0.00013). 200 µT ROS data previously reported in (15). (C) Representative field strength-dependent effects on new tissue (blastema) size. The
blastema is demarked by the white, unpigmented region, where 200 µT inhibits and 500 µT increases new tissue growth as compared to 45 µT
controls (Earth normal = 25–65 µT). Anterior wound site shown at day 3 after injury. Empty arrow = inhibition. Solid arrow = normal blastema.
Double solid arrows = increased blastema size. (D) Quantification of (C) showing changes in blastema size (as compared to 45 µT controls) after
exposure to a range of field strengths from 0 –900 µT. Blastema size calculated as percent of entire regenerate size. n ≥ 11 for all strengths. (100 µT
p = 0.0005; 200 µT p = 6.2205e-15; 300 µT p = 0.0056; 400 µT p = 0.0032; 500 µT p = 0.0003; 900 µT p = 0.0123). 0–600 µT blastema data
previously reported in (15). For all: Anterior is up. Scale bars = 100 µm. Error bars = SEM. Red columns = inhibition. Blue columns = activation. Grey
columns = no change. Significance: ANOVA with Tukey’s post-hoc. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4
WMFs Predictably Manipulate ROS-Mediated Stem Cell Behavior. WMF effects (at the anterior wound site) from 200 µT or 500 µT exposure, as
compared to 45 µT controls. (A) Representative images of stem cell markers and proliferation. Expression of heat shock protein 70 (Hsp70) at 3 days
after injury (grayscale panels), a marker of ROS signaling during planarian regeneration. Piwi-1 expression at 3 days (red panels), a general marker of
stem cells. Agat-1 expression at 3 days (cyan panels), a marker of late stem cell progeny (descendants). Actively dividing stem cells (mitosis) at

(Continued )
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cells have been found to be the only actively dividing cell

population. Thus, we examined stem cell proliferation by

looking at the presence of phosphorylated Histone H3 (pH3),

which labels mitotically active cells. We found that at 200 μT

there were significantly fewer mitotic cells, while at 500 μT there

was a significant increase in the number of mitotic cells

(Figure 4B). These results are consistent with our prediction

that WMFs could both inhibit the activation of stem cell

proliferation following injury as well as increase the

proliferative response.

Together, our data indicate that exposure to WMFs produces

non-stochastic changes that are predictable based on our

theoretical principles (Figure 1A), which suggest that different

field strengths have opposing effects. Furthermore, the data

provide strong evidence that WMF effects on proliferation

and tissue growth are consistent with the manipulation of

ROS. These results support further investigation into the

potential use of WMFs as a tool to alter stem cell activity.

Weak magnetic fields modulate
superoxide levels

The majority of cellular ROS signaling is transduced by

either H2O2 or O2
− [45, 46]. In planarians, both H2O2 and

O2
− are present at the wound site following injury [47].

Therefore, we next sought to examine the effects of WMF

exposures on these specific species (Figure 5). We

hypothesized that WMFs modulate ROS signaling by

influencing the formation of H2O2, since it has been well

demonstrated as an ROS mediator of traditional signaling

pathways.

To test this, we exposed regenerating planarians to

200 and 500 μT WMFs (with 45 μT controls) as before, and

then examined the levels of H2O2 using the species-specific

fluorescent reporter dye peroxy orange 1. Since with our

general ROS indicator dye (Figure 3) we observed a peak at

1 h after injury, we chose that time point to examine H2O2

levels at the wound site (Figure 5A). However, there were no

significant changes in the amount of H2O2 at either 200 or

500 μT (Figure 5B). In case there was a time delay in WMF

effects specifically on H2O2, we also tested for effects at 2 h

after injury but did not observe any significant changes

(Figures 5A, B).

We then repeated these same analyses with the O2
− specific

fluorescent reporter dye orange 1. The data show that WMFs do

alter wound site O2
− levels at both 1 and 2 h after injury

(Figure 5C). At 1 h, 200 μT WMF exposure significantly

reduced O2
− accumulation, although 500 μT produced no

change; while at 2 h, 200 μT reduced and 500 μT increased

levels of O2
− at the wound site (Figure 5D). This pattern of

opposing inhibition and activation of O2
− by WMFs mirrored

our results seen from WMF effects on ROS-mediated stem cell

activity (Figure 4). However, these results were inconsistent with

our hypothesized role for H2O2 in mediatingWMF effects during

tissue growth.

Studies suggest that H2O2 signaling plays a role during

planarian regeneration [15, 39, 40, 47]. Therefore, we further

investigated the possible differential roles for H2O2 and O2
− in

mediating the effects of WMFs on planarian regeneration

(Figure 6). The general flavoenzyme inhibitor

diphenyleneiodonium chloride (DPI) is often used as a

pharmacological NADPH oxidase inhibitor [48, 49]. To

confirm a role for H2O2 during regeneration, we examined

the ability of exogenous H2O2 (which is cell permeable and

readily diffuses across the plasma membrane) to rescue tissue

growth following general ROS inhibition by DPI (Figures

6A–C). We pre-exposed animals to either 10 μM DPI or its

vehicle control dimethyl sulfoxide (DMSO), amputated to

produce trunk fragments, then allowed fragments to

regenerate without drug exposure. At 3 days after

amputation, blastema formation was significantly inhibited,

while the addition of 400 μM H2O2 after amputation was able

to rescue/overcome this chemical block of ROS (Figure 6C).

We repeated this H2O2 rescue assay but following

inhibition of ROS by 200 μT WMF exposure, and without

any pre-exposure before amputation (Figures 6D–F). Unlike

chemical ROS inhibition, we found that WMF inhibition of

blastema formation at 3 days could not be rescued by the

addition of H2O2 (Figure 6F). To further support these

findings, we also analyzed the effects of exogenous H2O2

on O2
− levels without experimentally controlled WMF

exposure (Figures 6G–I). Adding H2O2 alone, even with

adding a 24 h pre-treatment, failed to significantly affect

injury-induced O2
− levels at the wound site at 2 h after

injury (Figure 6I). As our results reveal that exposure to

WMFs was able to alter the injury-induced accumulation of

O2
− at this same time point, the data suggest that WMF effects

FIGURE 4 (Continued)
3 h (green panels), as revealed by phospho-histone 3 (pH3) labeling. (B) Quantification of (A) showing changes in expression/mitosis as
compared to 45 µT controls. Hsp70, n= 11 (200 µT p=0.0299; 500 µT p=0.0491). Piwi-1, n ≥ 5 (200 µT p=0.0008; 500 µT p=0.0395). Agat-1, n ≥
7 (200 µT p = 0.0038; 500 µT p = 0.0281). Mitosis, n ≥ 19 (200 µT p = 0.0005; 500 µT p = 0.0003). For all: Anterior is up. Scale bars = 50 µm. Gene
expression (mRNA) visualized by fluorescent in situ hybridization. Mitotic cells visualized by immunofluorescence. Error bars = SEM. Red
columns = inhibition. Blue columns = activation. Significance: Student’s t-test. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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FIGURE 5
WMFs Alter Superoxide (O2

−) but not Hydrogen Peroxide (H2O2) Levels. WMF effects (at the anterior wound site) from 200 µT or 500 µT
exposure (as compared to 45 µT controls), as shown at 1 h and 2 h after injury. (A)H2O2 accumulation visualized by peroxy orange 1 live fluorescent
dye. Solid arrows = peak of accumulation. (B) Quantification of (A), showing no change in levels as compared to 45 µT controls. n ≥ 19. n.s. = not
significant. (C) O2

− accumulation visualized by orange 1 live fluorescent dye. Open arrow = loss of accumulation. Solid arrow = peak of
(Continued )
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on tissue growth do not occur via H2O2, but instead are

O2
−—mediated.

Species-specific ROS accumulations at
wounds are temporally distinct

During our investigation into the effects of specificWMFs on

H2O2 and O2
− levels at the wound site, we noticed there appeared

to be a difference in levels of individual species accumulation at

1 h versus 2 h. Furthermore, in these WMF experiments the

apparent pattern of peak species accumulation seemed to differ

between H2O2 and O2
− (Figure 5). To better probe the temporal

kinetics of ROS accumulation without confounding variables, we

investigated normal H2O2 and O2
− levels during tissue growth

without experimentally controlled WMF exposure (Figure 7).

Our data show that peak H2O2 accumulation after injury

occurred at 1 h, with a significant decrease by 2 h. Conversely,

while O2
− was present at the wound site by 1 h, O2

− levels did not

peak until 2 h.

During metabolism, O2
− is converted into H2O2 by the

enzyme superoxide dismutase (SOD), which effectively

increases H2O2 levels by reducing O2
− levels (Figure 1B). If

this enzymatic pathway is a main driver of ROS signaling

during tissue growth, then we would predict that O2
−

accumulation would temporally precede H2O2 accumulation.

Instead, our data indicate that H2O2 levels peak before O2
−

levels peak. Separately from its interaction with SOD, O2
− also

interacts with nitric oxide (NO) to form peroxynitrite (ONOO−),

which (like H2O2) is known to control traditional cell signaling

pathways downstream of O2
− levels [50, 51].

Therefore, we next hypothesized that instead of driving H2O2

formation, O2
− reacts with NO to promote ONOO− signaling. If

supported, we would predict that 1) injury-induced wound site

ONOO− accumulation occurs during planarian regeneration,

and 2) the pattern of peak ONOO− levels would align

temporally with our observed peak of O2
−. We used the

species-specific fluorescent reporter dye 2′,7′-
dichlorodihydrofluorescein diacetate (DCDHF) to visualize

ONOO− levels during tissue growth (Figure 7A, bottom

panels). Our data show that similar to O2
−, while at 1 h

ONOO− was present at the wound site, there was a significant

increase in ONOO− levels by 2 h (Figure 7B).

Together, these data reveal that the accumulation of H2O2

and O2
− are temporally distinct during stem-cell mediated tissue

growth. In addition, our results highlight a previously

unappreciated role for H2O2-independent ROS signaling

mechanisms during this process. These data indicate that both

H2O2 and O2
−/ONOO− pathways are activated after injury,

suggesting that ROS mechanisms during planarian

regeneration are reliant on more than one ROS signaling

pathway.

Discussion

The study of ROS across various developmental,

regenerative, and disease model systems has resulted in an

explosion of data revealing the importance of this highly

reactive group of oxygen-containing molecular products. In

searching for ways to exert control over the vast array of

cellular functions that ROS influences, researchers have turned

to exploring multiple modalities. Exposures to moderate and

strong magnetic fields are known to affect radicals and biological

processes [52]. However, the research onWMFs (including ours)

indicates that field strengths below 1 mT have important

biological implications as well. While the potential of WMF

exposure as a non-invasive means to control stem cell activity

and cell proliferation is exciting, enthusiasm for being able to

translate this potential into real-world approaches is dampened

by the need to address gaps in our fundamental understanding of

the mechanisms involved.

The work presented here aims to begin addressing these gaps

by testing several simple, but critical, current hypotheses in the

field. The first was that WMF effects, while not following the

conventional dose response curves of pharmacological

treatments, can be predicted based on theoretical models and

therefore represent a potential tool for the directed manipulation

of cell proliferation and tissue growth. The second hypothesis

followed from the first, given our predictions were based on the

radical pair mechanism: that the effects of WMFs during tissue

growth are due largely to modulation of ROS signaling. This

mechanism predicts that at different field strengths WMFs will

produce opposite effects on ROS levels, resulting in a non-linear

(binary) switch from decreased tissue growth to increased tissue

growth. If supported, this could help explain why the data

reported in the literature for effects from WMFs can often

appear contradictory. Not only are the effects likely context

dependent (as are most treatments) but vary by field strength.

In addition, WMF effects would also be determined in part by the

different outcomes associated with individual threshold levels for

free radicals such as ROS and reactive nitrogen species (RNS;

FIGURE 5 (Continued)
accumulation (note lack of peak at 2 h with 200 µT). Double solid arrows = increased accumulation (note lack of increased accumulation at 1 h
with 500 µT). (D)Quantification of (C) showing changes in levels as compared to 45 µT controls. (At 1 h: 200 µT p = 6e-9; at 2 h 200 µT p = 2e-7 and
500 µT p = 0.00009). For all: Anterior is up. Scale bars = 100 µm. Error bars = SEM. Red columns = inhibition. Blue columns = activation. Grey
columns = no change. Significance: Student’s t-test. ****p < 0.0001.
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FIGURE 6
H2O2 Rescues Chemical, but notWMF, Inhibition of Tissue Growth. New tissue and superoxide levels at the anterior wound site. (A–C) Blastema
size at 3 days post injury after chemical inhibition of ROS by 10 μMdiphenyleneiodonium (DPI), an NAD(P)H oxidase inhibitor. (A) Treatment scheme.
Animals were pre-treated for 24 h prior to injury, then amputated. All regenerates were returned to untreated worm water, except for DPI + H2O2

animals, which were then placed in 400 μM H2O2 until scoring. Controls = vehicle control (DMSO only). (B) Images of new tissue growth. (C)
(Continued )
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another class of molecules involved in cell signaling), which have

both been implicated in a wide array of biological systems

[53, 54].

Our data demonstrate that consistent with the radical pair

mechanism, the effects of WMFs across a range of field strengths

can be predicted by the known outcomes of ROS signaling at

given threshold levels. Thus, unlike many molecular-genetic

tools, WMFs can be used to direct biological outcomes for

both loss- and gain-of-function depending on the field

strength used. Our data show that exposure to 500 μT WMFs

increased ROS accumulation, resulting in upregulated gene

expression, increased proliferation, and expansion of stem cell

and progeny cell populations—all of which result in increased

tissue growth. And (as further predicted by our theoretical

model) exposure to 200 μT resulted in the opposite effect,

blocking stem cell-mediated new growth as a result of

inhibiting ROS accumulation after injury.

WMFs have been shown to alter ROS levels and cell

behaviors in vitro under context-specific circumstances, and

these effects are often attributed to the radical pair

mechanism [55]. For example, WMF strengths ranging from

0 to 600 μT were shown to either inhibit or promote growth and

ROS levels in fibrocarcinoma cell culture depending on field

strength [56]. Both RNS and ROS signaling are important

regulators of stem cells, proliferation, cell migration, and

tissue growth, where they can act as extracellular chemical

cues as well as intracellular second messengers [57, 58]. For

example, in bone marrow stem cells it was found that the

addition of exogenous H2O2 prevented proliferation and

differentiation [59], while an earlier study on RNS signaling

showed that NO plays a critical role in cell differentiation [60].

During regeneration specifically, many studies (including in

axolotl, zebrafish, Xenopus, and planarians) have identified ROS

signaling as necessary to drive regenerative outgrowth [11, 39, 61,

62]. Others have shown that ROS is able to rescue

pharmacologically inhibited regeneration, including a study in

zebrafish that found exogenous H2O2 was sufficient to rescue

heart regeneration [63]. For the present work, we hypothesized

that WMF effects on stem cells were mediated by H2O2

specifically. There is ample evidence that H2O2 signaling plays

an active role in planarian regeneration. H2O2 is upregulated at

all wound sites within the first hour [40, 47]. The ROS inhibitor

DPI inhibits both blastema formation and wound site H2O2

accumulation [15, 39, 40]. Furthermore, exogenous H2O2 has

been shown to rescue regeneration in planarians with inhibited

extracellular regulated kinase (ERK) signaling [40].

We were surprised to find that the data were not consistent

with our hypothesis but instead indicate that O2
− mediates our

observed WMF effects. These results do not contradict an

endogenous role for H2O2 during planarian regeneration.

Instead, our findings suggest that 1) there is a previously

unrecognized role for O2
− signaling during planarian

regeneration, and 2) that WMFs manipulate stem cell

activity by modulating levels of O2
− (Figure 8). Interestingly,

data from our previous work support these findings [15].

There, we used RNA interference to knockdown superoxide

dismutase (SOD), an enzyme that converts O2
− into H2O2 [66],

to rescue blastema growth in 200 μT exposed regenerates by

increasing ROS levels. This loss of SOD not only rescued

regeneration but in controls also resulted in increased

blastema sizes [15], similar to our 500 μT WMF exposures.

Importantly, loss of the SOD enzyme increases O2
− levels at the

expense of H2O2 levels. This provides support for our

conclusion that the processes being affected by WMFs are

not mediated by H2O2, highlighting the importance of O2
− as a

signaling molecule during regeneration.

Both O2
− and H2O2 are known to transduce ROS signaling,

with each independently regulating downstream signaling

pathways (Figure 8A). Several oxygen- and nitrogen-

containing molecules can act as second messengers, which

typically transduce extracellular signals into a cellular

response, including NO and ONOO−. H2O2 acts as a second

messenger to directly interact with downstream pathway

members, while O2
− can signal by either oxidizing proteins

directly or by interacting with NO to form ONOO− [67].

Cellular O2
− production occurs as a result of electron leakage

from the mitochondrial electron transport chain, as well as

through decoupled endothelial nitric oxide synthase (eNOS)

reactions [64]. Moreover, coupled eNOS reactions are one

major source of intracellular NO, which is required for the

production of ONOO− [51]. While O2
− can lead to the

production of both ONOO− and H2O2, the formation of

ONOO- via a NO is kinetically favored over the enzymatic

conversation of O2
− to H2O2 by SOD [68].

FIGURE 6 (Continued)
Quantification of (B). n ≥ 8. (DPI p = 0.00004). (D–F) Blastema size at 3 days post injury after WMF inhibition of ROS by 200 µT. (D) Treatment
scheme. All animals were exposed to the specified WMF immediately after amputation. 200µT + H2O2 animals were also placed in 400 μM H2O2 at
that time. Controls = 45 µT exposure only (Earth normal). (E) Images of new tissue growth. (F) Quantification of (E). n ≥ 23. (200 µT p = 7.47e-7;
200µT +H2O2 p = 3e-9). (G–I)O2

− levels at 2 h post injury visualized by orange 1 live fluorescent dye. Note: these animals were not exposed to
specificWMFs but placed in a temperature-controlled incubator as standard for the field. (G) Treatment scheme. Exogenous H2O2 animals were pre-
treated with 400 μM H2O2, then after injury returned to fresh H2O2 for 1 h prior to being placed in O2

− specific dye for another hour. Controls =
untreated (kept in normal wormwater up until dye loading). (H) Images of wound site at 2 h. (I)Quantification of (H). n ≥ 10. n.s. = not significant. For
all: Anterior is up. Scale bars = 100 µm. Solid arrows = control blastema size. Open arrows = inhibition. Error bars = SEM. Dark grey columns = control
values. Light grey columns = inhibition. Significance: Student’s t-test. ****p < 0.0001.
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ONOO- signaling is known to be upstream of cell fate

decisions; in neural stem and progenitor cell populations

ONOO- has been shown to regulate stem cell renewal and

proliferation [69, 70]. While our data did not reveal any

regulation of O2
− levels by H2O2, crosstalk between the two

pathways does exist. In fact, the inactivation of SOD and thus

reduced production of H2O2 occurs as a direct result of

ONOO− formation after a NO and O2
− reaction [71]. Our

data indicate that both O2
− and H2O2 mediate ROS signaling

during planarian regeneration, but that WMFs affect O2
−

signaling specifically. This is reinforced by our finding that

following injury the peak of H2O2 is WMF insensitive,

FIGURE 7
Induces Peaks of Hydrogen Peroxide (H2O2), Superoxide (O2

−), and Peroxynitrite (ONOO−). Species accumulation at 1 h and 2 h post injury at
the anterior wound site, visualized by species-specific live fluorescent dyes. Note: these animals were not exposed to specific WMFs but placed in a
temperature-controlled incubator as standard for the field. (A) Normal accumulation of specific oxygen species. H2O2 levels as visualized by peroxy
orange 1. O2

− levels as visualized by orange 1. ONOO− levels as visualized by 2′,7′-dichlorodihydrofluorescein diacetate (DCDHF). (B)
Quantification of (A) showing H2O2 levels peak at 1 h, while both O2

− and ONOO− levels peak at 2 h. H2O2, n ≥ 12 (p = 0.00012). O2
−, n ≥ 9 (p =

0.0285). ONOO−, n ≥ 12 (p = 0.0232). For all: Anterior is up. Scale bars = 50 µm. Solid arrows = peak of accumulation. Error bars = SEM. Dark grey
columns = peak levels. Light grey columns = non-peak levels. Significance: Student’s t-test. *p < 0.05, ***p < 0.001.
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whereas the peak of O2
− can be inhibited by 200 μT and

increased by 500 μT WMFs (Figure 8B). Furthermore, our

data demonstrate that these peaks are temporally distinct,

with peak H2O2 levels occurring at 1 h after injury and peak

levels of both O2
− and ONOO− occur subsequently at 2 h

after injury (Figure 8C).

This temporal shift in species’ peaks suggest that there may

be a difference in the temporal requirement for H2O2 versusO2
−/

ONOO− signaling. This is supported by our findings that peak

O2
−/ONOO− levels occur after H2O2 levels peak. In further

support of this, our previous work demonstrated that 200 μT

WMF exposures are still able to inhibit tissue growth if the start

FIGURE 8
WMFsModulate StemCell Behavior Via the Pleiotropic Signaling Molecule, Superoxide (O2

−). (A)Cell signaling pathways downstream of oxygen
containing molecules and their relationship to O2

−. Note: although H2O2 signaling and O2
−/ONOO− signaling are regulated independently, there can

be tissue/organ/organism-specific crosstalk between them. MAPK (mitogen activated protein kinase) signaling includes: ERK 1/2 (extracellular
regulated kinase 1/2), p38, and JNK (c-Jun-N terminal kinase). Other effectors include: PI3K/AKT (phosphatidylinositol-3-kinase/Akt serine/
threonine kinase family) signaling; PI3K/AKT (phosphatidylinositol-3-kinase/Akt serine-threonine kinase family) signaling; cyclic GMP-dependent
kinases, like PKG-1 (protein kinase G-1); protein tyrosine phosphatases (PTPs); the serine/threonine phosphatase PP1 (protein phosphatase 1); the
protein and lipid phosphatase pTEN (phosphatase and tensin homolog deleted on chromosome 10); and the JAK-STAT (janus kinase-signal
transducer and activator of transcription) pathway member STAT3. For more information, please see reviews of O2

− metabolism [64], ONOO−

signaling [65], and H2O2 signaling O2
− [45]. (B) Graphical summary of our WMF experimental data. Relative changes in H2O2 (orange) and O2

− (blue)
values after WMF exposures (see data Figure 5). Note that WMFs only affect O2

− levels. (C) Graphical summary of normal accumulation of oxygen
containing molecules after injury. Relative changes in H2O2 (orange), O2

− (blue), and ONOO− (dashed purple) during planarian regeneration in the
absence of experimentally-controlled WMF exposure (see data Figure 7). Note that O2

− and ONOO− both peak 1 h after H2O2 peaks.
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of the exposure is delayed until after the H2O2 peak [15]. These

results demonstrate that presence of the 1 h post injury H2O2

peak is not able to rescue regeneration with WMF inhibition of

tissue growth. Together, the data suggest that injury-induced

H2O2 signaling may play an earlier role during tissue growth

(such as during initiation of regeneration), while O2
−/ONOO−

signaling functions independently at later time points (for

example, as a propagation signal to maintain growth). This is

a future direction that we will be investigating.

Although the studies presented here did not address the role

of cell migration on WMF effects during tissue growth, it is

interesting to note that the migration of planarian stem cells and

their progeny to the wound site and into the forming blastema

does occur [72, 73]. While wound closure is typically completed

by 1 h post injury, migration to the wound site is known to occur

later and be sustained during blastema formation. ROS in general

and superoxide specifically have been shown to promote cell

migration in multiple other contexts [74–76], which suggests the

possibility that in planarians WMF effects might potentially

include changes in ROS-mediated cell migration. However,

since superoxide regulation of cell migration has commonly

been shown to occur via SOD-induced increases in H2O2

signaling [77, 78], and since RNS signaling has been shown to

be a negative regulator of cell migration [79, 80], this area of

inquiry would require a great deal more investigation.

RNS have emerged as vital components of the wound healing

process, which occurs prior to and is closely tied to tissue

regeneration in many species [81, 82]. For example, NO has

been shown to enhance wound healing in diabetic chronic

wounds by accelerating cell proliferation and migration after

injury [83], and as such NO donors are promising candidates for

use in hydrogels to treat wounds [84]. However, like ROS, both

too much and too little RNS can be harmful. And while both ROS

and RNS have been shown to play roles during cell proliferation

and new tissue growth, the mechanisms of RNS signaling during

regeneration are much less well understood [85, 86]. Although a

recent study has demonstrated a role for NO during zebrafish fin

regeneration [87], the role of RNS in the regenerative process is

still largely uncharacterized and its role during planarian

regeneration is currently unknown. Given the potential, based

on the radical pair mechanism, for WMF interactions with RNS

signaling during tissue growth, this is a promising area for further

studies.

Moving forward, elucidation of the underling mechanisms

governing the behavior of quantum phenomena in biological

systems will be vital. Mounting evidence on the effects of WMFs

highlight the possibilities for exposures to elicit control over

disease states via ROS. In cancer research, ROS are of increasing

interest as a therapeutic target and data suggest tumor cells may

be more sensitive to minor changes in ROS levels than other cell

types [88, 89]. In the immune system, upregulation of ROS is

essential to host defenses against bacterial infection, where

neutrophils release high levels of ROS at the site of infection

[90]. Furthermore, autoimmune diseases, such as multiple

sclerosis, are associated with significantly increased ROS

levels, which are thought to participate in provoking the

autoimmune response [91]. Therefore, research into the

mechanisms that govern the effects of WMFs on biological

systems holds the potential to unlock new and innovative

therapies in areas of regenerative medicine, cancer research,

and more.

Methods

Animal care and amputations

The asexual clonal line of Schmidtea mediterranea (CIW4)

was maintained in the dark at 18 C. Planarians were kept in

ultrapure Type 1 water with Instant Ocean salts at 0.5 g/L (worm

water). Animals were fed every third week with liver paste

processed from a whole calf liver (antibiotic and hormone

free) obtained from Creekstone Farms (Arkansas City, KS).

Liver paste was never frozen or thawed more than once

before feedings. Worms 2–5 mm in length were used for all

experiments and worms were starved at least 1 week before use.

Amputations were done as previously described [92] with a

dissecting microscope on a custom-made cooling Peltier plate.

Trunk fragments were produced via transverse amputation just

anterior and posterior to the pharynx, with cuts made at a

90 degree angle to the sagittal plane for consistency in

wounding. All untreated controls were held according to field

standards in a biological oxygen demand incubator (VWR) at

18 C in the dark.

Magnetic field exposures

Experimentally-controlled static WMF exposures were done

with custom-built triaxial Helmholtz coils in a μ-metal enclosure

(MagShield box) to block external magnetic fields as previously

described [15]. Direct electric current to Helmholtz coils was

supplied by DC power sources (Mastech HY3005D-3) and was

fed through both x and y axis coils to produce a uniform

magnetic field. The MagShield box was kept in a temperature-

controlled room (20 C). Animals were placed in either 35 or

60 mm Petri dishes in worm water (or in specific media as

described in individual assays) in the center of each

Helmholtz coil. Magnetic field exposures were performed in

the dark always with one coil set at 45 μT (Earth normal

average for the geomagnetic field) separated by a μ-metal

partition from the other side, where a second coil was set at

indicated experimental field strengths from 0 to 900 μT. Before

and at the end of each experiment field strengths were confirmed

using either a gauss or mG m (AlphaLab models GM1-HS or

MGM). Unless otherwise specified, all planarians were exposed
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to WMFs within 5 min of amputation and then continuously

until scoring and imaging at the indicated time. For Figure 3D:

total experimental replicates for blastema growth assays were n ≥
1, with total biological replicates for each condition as follows:

45 μT, n = 164; 0 μT, n = 19; 100 μT, n = 28; 200 μT, n = 25;

300 μT, n = 18; 400 μT, n = 18; 500 μT, n = 17; 600 μT, n = 16;

700 μT, n = 14; 800 μT, n = 11; 900 μT, n = 18.

Detection of reactive oxygen species and
oxygen-containing molecules

General ROS and individual species were visualized by the

use of cell-permeant live fluorescent reporter dyes. All images

were taken ventrally, and animals were kept in the dark while

loading dye. For detecting general ROS levels, the oxidative

stress indicator dye, 5-(and-6-)-chloromethyl-2’,7′-
dichlorodihydrofluorescein diacetate (CM-H2DCFDA;

Molecular Probes C6827; excitation, 470 nm; emission,

525 nm) was used. Intact planarians were pre-exposed to

the specified WMFs (see above) for 23 h*, at which time

they were amputated to produce trunk fragments.

Fragments were placed in 25 μM CM-H2DCFDA (from

10 mM DMSO stock) and returned to the specified WMF

for 1 h, at which time regenerates were rinsed 3X in worm

water and imaged. Total experimental replicates were n ≥ 1.

Total biological replicates were: 45 μT, n = 189; 0 μT, n = 19;

100 μT, n = 17; 200 μT, n = 24; 300 μT, n = 23; 400 μT, n = 26;

500 μT, n = 12; 600 μT, n = 20; 700 μT, n = 22; 800 μT, n = 21;

900 μT, n = 23. (*Note, we have since determined that WMF

pre-exposure is not required to obtain the observed WMF

effects; see for example our H2O2 and O2
− WMF data in

Figure 5 and Figure 6D–F)

This protocol was used for the remaining dyes, with the

following exceptions: H2O2 was detected by soaking newly

amputated fragments (with no WMF pre-exposure) in 20 μM

peroxy orange 1 (Sigma SML0688; from 1 mM DMSO stock;

excitation, 470 nm; emission, 525 nm) plus the specifiedWMF

for 1-h prior to imaging. O2
− was detected by soaking

fragments (with no WMF pre-exposure) for 1-h prior to

imaging in 2 μM orange 1 (Enzo Life Sciences ENZ-51012;

from 5 mM dimethylformamide stock; excitation, 550 nm;

emission, 620 nm). For “normal” (untreated/unexposed)

experiments, peroxy orange 1 and orange 1 dye were used

as above, but without concurrent WMF exposure. ONOO−

was detected by soaking regenerating fragments in 10 μM

2′,7′-dichlorodihydrofluorescein diacetate (DCDHF) for 1-h

prior to imaging (Enzo life sciences ALX-610-022-M050; from

10 mM dimethylformamide stock; excitation 502 nm;

emission 523 nm). For 2 h timepoints, fragments were cut

and allowed to regenerate for 1 h, at which time animals were

soaked in dye for another hour before rinsing and imaging.

For all time points, animals were rinsed in ice cold worm water

3X to preserve fluorescence. Total experimental replicates for

all were n ≥ 2. Total biological replicates for O2
− were: 45 μT at

1 h, n = 42; 200 μT at 1 h, n = 25; 500 μT at 1 h, n = 20;

untreated at 1 h n = 9; 45 μT at 2 h, n = 53; 200 μT at 2 h, n =

21; 500 μT at 2 h, n = 20; untreated at 2 h, n = 18. Total

biological replicates for H2O2 were: 45 μT at 1 h, n = 47;

200 μT at 1 h, n = 19; 500 μT at 1 h, n = 25; untreated at

1 h, n = 12; 45 μT at 2 h, n = 58; 200 μT at 2 h, n = 27; 500 μT at

2 h, n = 26; untreated at 2 h, n = 14. Total biological replicates

for ONOO− were: untreated at 1 h, n = 30; untreated at

2 h, n = 12.

Immunostaining and in situ hybridization

Fluorescent in situ hybridization (to observe and quantify

mRNA expression) was performed as previously described [93],

with the following exceptions: Prehybe and hybe used yeast RNA

at 1 mg/ml and probe dilution was 0.5 ng/μl with hybridization

for 24 h. S. mediterranea riboprobes to Hsp70, Piwi-1, and Agat-

1 were generated as described in our previous paper in (15). The

regions/primers used were: for Hsp70, a 552 bp region from 5′-
GGTTTTTGATTTGGGTGGTG to 3′-AGCTGTTGCTATGGG
AGC; for Piwi-1, a 2461 bp region from 5′-GATCCCAATTTA
AGACCAAGAAGAG to 3′-TTTTTATGTATTCGATTAAAA
AAAA; and for Agat-1, 404 bp from 5′-GGAGTTAAAGTG
TCCATCCAG to 3′-GTTGCTAACCTGACTGACATGC. Total
experimental replicates for all were n ≥ 1. Total biological

replicates for Hsp70 riboprobe were: 45 μT, n = 11; 200 μT, n

= 11; 500 μT, n = 11. For Piwi-1 riboprobe: 45 μT (200 μT

control), n = 4; 200 μT, n = 4.45 μT (500 μT control), n = 7;

500 μT, n = 7. For Agat-1 riboprobe: 45 μT (200 μT control), n =

5; 200 μT, n = 5; 45 μT (500 μT control), n = 5; 500 μT, n = 5.

Labeling of miotic cells by immunostaining was performed as

previously described [94], with anti-pH3 (Sigma/Millipore 04-

817; 1:25) as the primary antibody. A goat anti-rabbit

horseradish peroxidase (Invitrogen 65-6120) with TSA

Cyanine 3 (Cy3)-tyramine (PerkinElmer; 1:50) amplification

was used as the secondary antibody. All experiments were run

once with controls. For Piwi-1 and Agat-1 a second experiment

was run for representative photos. Total biological replicates:

45 μT, n = 39; 200 μT, n = 25; 500 μT, n = 19.

Pharmacology

ROS production was inhibited with diphenyleneiodonium

chloride (DPI; Sigma D2926). Endogenous ROS in the form of

H2O2 was administered by soaking planarians in 400 μM

H2O2 (diluted from 30% stock; Sigma 216763). For Figures

6A–C: Intact worms were presoaked in 10 μM DPI (from

1 mM DMSO stock) for 24 h. Animals were amputated to

form trunk fragments, then placed in worm water (DPI) or
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400 μMH2O2 (DPI + H2O2) and allowed to regenerate at 18 C.

At 3 days post injury, animals were imaged and scored for

blastema size. Controls were pre-exposed to an equal amount

of DMSO, then placed in worm water after amputation.

Experiments were run at least 1 time. Total biological

replicates: DMSO controls, n = 18; DPI, n = 8; DPI +

H2O2, n = 10. For Figures 6D–F: 400 μM H2O2 was added

after amputation concurrent with 200 μT WMF exposure.

Experiments were run twice. Total biological replicates:

45 μT, n = 35; 200 μT, n = 28; 200 μT + H2O2, n = 23. For

Figures 6G–I, animals were presoaked in 400 μM H2O2

(Exogenous H2O2) or worm water (Untreated Controls) for

24 h prior to amputation and then returned to H2O2 (or worm

water for controls) for 1 h, at which time all animals were

rinsed 3X in worm water and placed in the O2
− dye orange 1

(as described above) for an additional hour prior to imaging at

2 h post amputation. Experiments were run once. Total

biological replicates: H2O2, n = 10; untreated, n = 12.

Image collection

A Zeiss V20 Fluorescence Stereomicroscope with an

AxioCam MRc or MRm camera and ZEN (lite) software

was used for image collection. All live images were taken

while regenerates were moving (fully extended) to prevent

skewing blastema size/signal intensity due to scrunching. For

blastema size, animals were imaged in 100 mm Petri dishes

with worm water. For live dyes, animals were imaged in

35 mm FluoroDishes (WPI FD35-100) with 25 mm round

no. 1.5 coverslips (WPI 503508). For the general ROS dye

CM-H2DCFDA, heat maps were generated using the

standard rainbow lookup table (LUT) to visualize signal

intensity. For each assay, samples were imaged at the

same magnification and exposure levels to prevent

confounding variables during comparisons (i.e.,

acquisition conditions were kept constant across an

experiment between control/treated and/or all different

time points). Photoshop (Adobe) was used to orient and

scale images (and improve clarity for morphology only). No

data was added or subtracted. Original images available by

request.

Quantification and statistical analyses

The magnetic lasso tool in Photoshop (Adobe) was used

to generate total pixel counts of the anterior blastema (white

tissues) and total regenerate (entire worm including

blastema). To account for any variation in worm size,

blastema was calculated as percent of total body size:

(blastema size/body size) x 100. The magnetic lasso tool

was also used to measure gray mean values (signal

intensity) of fluorescent dyes at the anterior blastema. To

account for any variation in dye loading, signal intensity was

calculated as the difference between signal at the blastema

versus signal from the middle of the regenerate (the

pharyngeal region): blastema – pharyngeal region. Cell

counts of pH3+ were done using the RTNC plugin tool

with ImageJ. Number of mitotic cells was expressed as

cells per mm2 of the entire regenerate, with total area

measured using the magnetic lasso tool (as before).

Significance: either two-tailed Student’s t-test with

unequal variance (Microsoft Excel or GraphPad Prism 9);

or one-way analysis of variance (ANOVA) with Tukey’s

multiple comparison test (GraphPad Prism 7).
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